Современные системы накопления энергии
Коммунальный сектор и транспорт стремятся полностью перейти на электрическую энергию, и в связи с этим быстро растет потребность в надежном, эффективном и экономичном аккумулировании энергии и ее отдаче во время пиковых нагрузок. В данной статье речь пойдет о накоплении и хранении энергии в любом виде, не только посредством ее преобразования в химическую и обратно. Батареи, конденсаторы, кинетическая энергия, хранение энергии в виде нагретой или охлажденной жидкости, а также в виде водорода — все это уже доступные и использующиеся решения, дающие широкие возможности. Однако, как обычно и бывает в нашей жизни, идеального метода нет, и каждая из перечисленных технологий, в зависимости от предполагаемого последующего применения накопленной энергии, имеет свои преимущества.
Технологии накопления энергии играют все большую роль в развитии современных систем коммунального энергоснабжения. Например, общая емкость накопления энергии в США уже превысила 2 ГВт·ч, причем недавно ежегодное увеличение объединенных хранилищ энергии приблизилось к 50%. Отрасль продолжает развиваться, адаптируясь к изменениям энергетического ландшафта и внедряя новые технологии.
Поскольку процентное содержание непрерывной генерации энергии на основе углерода в структуре энергопотребления уступает место менее стабильному производству энергии из возобновляемых источников, накопление энергии представляет собой средство, с помощью которого спорадические поставки могут быть эффективно синхронизированы с колебаниями генерации и спроса в течение любого дня. По мере развития технологий и стратегий накопления энергии мы начинаем видеть возможности генерации энергии при энергетической независимости от прихотей природы.
Системы накопления энергии
Для захвата энергии, произведенной за короткий промежуток времени, с целью ее использования в дальнейшем доступны самые разные средства и технологии. Системы аккумулирования электрической и тепловой энергии являются наиболее распространенными, поэтому при проектировании современных объектов и инженерных систем именно они используются коммунальными предприятиями, которые, в свою очередь, предлагают жильцам зданий такие преимущества, как большая отказоустойчивость, экономия затрат, повышение энергоэффективности и удобство пользования энергией любого типа.
Электрическая энергия
Наибольший рост количества устанавливаемых систем накопления энергии за последнее десятилетие пришелся на электрические системы, такие как аккумуляторные батареи и конденсаторы. Литий-ионные аккумуляторы быстро стали той рабочей лошадкой, которая обычно используется в современных крупных системах аккумулирования энергии. Кроме того, такие аккумуляторные батареи являются основными компонентами и в быстро растущем парке электромобилей.
В качестве примера эффективной батареи можно привести ту, что построил Илон Маск (Elon Musk) в Австралии. Она была введена в эксплуатацию 1 декабря 2017 г. (рис. 1) [4], и уже 14 декабря ей удалось показать себя в деле во время сбоя на местной угольной электростанции.
Кроме того, разрабатываются так называемые проточные или буферные батареи, которые можно использовать с учетом требуемых пиковой емкости и продолжительности компенсации недостающей энергии. Их роль могут выполнять конденсаторы — устройства, хранящие электрическую энергию в форме электростатического заряда, накопленного на их токопроводящих металлических обкладках без химического преобразования.
Энергия, накопленная в конденсаторе, описывается известной со школьной скамьи формулой:
W = 1/2Q2/C = 1/2C × V2,
где Q — количество заряда, накопленного на конденсаторе, C — емкость конденсатора, а V — напряжение на конденсаторе.
Как видно из приведенного уравнения, максимальное количество энергии, которое может храниться на конденсаторе, зависит от емкости, а также от максимального номинального напряжения конденсатора. Накопленная энергия может быстро высвобождаться из конденсатора благодаря тому, что конденсаторы имеют крайне низкое внутреннее сопротивление. Это свойство часто используется в системах, для которых характерны большие скачки нагрузки. Когда конденсатор подключен к источнику питания, он накапливает энергию (заряжается, не требуя при этом специальных зарядных устройств). При необходимости в порции дополнительной энергии конденсатор отдает накопленную энергию (разряжается), в этом отношении он похож на батарею. Разница в том, что батарея, как уже было сказано, использует электрохимические процессы для накопления энергии, в то время как конденсатор просто хранит электрический заряд. Таким образом, конденсаторы могут выделять накопленную энергию с гораздо более высокой скоростью, чем батареи, поскольку химические процессы для трансформации энергии и ее выхода из батареи требуют больше времени. Однако гораздо чаще конденсаторы используются для компенсации реактивной мощности, приводящей к потерям в энергосетях.
Механические системы
Механические системы накопления энергии преобразуют электрическую энергию в потенциальную или кинетическую и хранят ее в таком виде, превращая обратно в электрическую, когда это необходимо. Обычно системы, основанные на этом подходе, включают крупные гидроаккумулирующие насосы (пример эффективного применения гидроаккумулирующих электростанций показан на рис. 2), механические маховики и устройства для хранения сжатого воздуха.
Тепловые системы
Аккумулирование тепловой энергии позволяет накапливать тепловую энергию (горячую или холодную) и позднее использовать ее, чтобы сбалансировать потребность в энергии между дневным и ночным потреблением или даже в разные климатические сезоны. Чаще всего такая система реализуется в виде емкостей для хранения охлаждающей воды или воды для нагрева (рис. 3), которая может генерироваться в периоды более низкого потребления энергии, а затем отдаваться в пиковое время, поддерживая стратегию ограничения максимальной нагрузки. Другие системы накопления тепловой энергии включают расплавленные соли, хранилище льда и криогенную технику.
Химические системы
В дополнение к аккумуляторным системам, которые, как правило, основаны на электрохимическом процессе, доступны и другие системы хранения химической энергии, например путем выработки и хранения водорода. Для выработки водорода из воды путем электролиза применяется электрическая энергия. Затем водород сжимается и хранится для будущего использования в генераторах, работающих на водородном топливе, или в топливных элементах, опять превращаясь в воду.
Такой подход позволяет накапливать большие объемы энергии, однако он необязательно будет самым эффективным. Проблема в том, что он сам по себе энергозатратный, поскольку требует большого количества энергии для выделения водорода из воды, природного газа или биомассы, хранения газа путем сжатия или сжижения, передачи энергоносителя пользователю. Также часть энергии теряется при преобразовании в полезную электроэнергию с топливными элементами. Наиболее практичным пока остается получение водорода из природного газа — метана, СH4. Один из примеров такой установки показан на рис. 4, но в данном случае все равно требуется энергия для его извлечения. Для практического использования остается только примерно 25%.
Преимущества, получаемые от использования систем накопления энергии
Системы накопления энергии могут использовать, чтобы поддержать стабильность ее поставок, снизить затраты и обеспечить устойчивость энергетической системы в целом. Возврат инвестиций будет зависеть от местных цен на коммунальные услуги, любых доступных программ стимулирования коммунальных предприятий для пикового сокращения потребления мощности, возможностей выработки энергии на месте и конкретного профиля нагрузки на определенный объект. Инвестиции могут вернуться довольно быстро: так, аккумуляторная батарея Илона Маска, показанная на рис. 1, согласно отчету Renew Economy [4] всего за несколько дней дала заработать владельцам 1 млн австралийских долларов, или $800 тыс. При этом Австралия является одним из лидеров по развитию возобновляемой энергетики, и наличие эффективного способа хранить такую энергию делает ее крайне дешевой.
Еще одно преимущество систем накопления энергии — их быстрое реагирование. Большинство технологий хранения могут компенсировать нехватку мощности электроэнергии в сети очень быстро, в то время как источники на основе ископаемого топлива имеют тенденцию довольно медленно увеличивать добавочную мощность. Такая скорость важна для обеспечения стабильного энергоснабжения в случаях, когда происходит неожиданное резкое увеличение нагрузки. В качестве шутки, хорошо иллюстрирующей проблему, можно привести эпизод из известного фильма «Рождественские каникулы» (“National Lampoon’s Christmas Vacation”, 1989), где Кларк Гризволд неожиданно включил все 25 тыс. лампочек рождественской иллюминации. Пришлось запустить дополнительный атомный реактор на АЭС, до его подключения часть районов города оказалась обесточенной.
Резервное питание
Системы накопления энергии могут служить надежным источником резервного питания на случай потери питания от электросети из-за тяжелых погодных условий или иных проблем. Помогая объектам оставаться в рабочем состоянии, такие системы исключают потери из-за сокращения времени простоя и обеспечивают повышенную устойчивость к критическим ситуациям. Один из примеров — источник бесперебойного питания, но возможен и больший масштаб.
Ограничение пика и сдвиг нагрузки
Функциональность систем накопления энергии типа «потребность — ответ» позволяет им участвовать в стимулирующих поставщиков коммунальных услуг программах энергопотребления, которые направлены на снижение использования энергии в периоды пиковой нагрузки на электрическую сеть.
Цена на энергию, как правило, обычно самая высокая в периоды пикового спроса. Ограничение максимума пиковых нагрузок обычно достигается путем смещения ряда нагрузок на время более низкого спроса на электроэнергию, например за счет ценового стимулирования потребителя с использованием многотарифных счетчиков потребляемой электроэнергии. Однако если сами нагрузки или время их работы не могут быть скорректированы по времени, следует рассмотреть вопрос о применении той или иной технологии накопления энергии.
Именно системы накопления энергии могут поддерживать сглаживание потребления электрической мощности для снижения затрат на электроэнергию. При этом, например, аккумуляторная батарея может заряжаться в периоды низкой нагрузки — в ночное время или в периоды более низкого потребления в течение дня, а также, как батарея Илона Маска (рис. 1), с использованием альтернативных источников энергии. Затем такая батарея разряжается во время периодов высокой нагрузки или аварийного отключения, смягчая воздействие больших нагрузок и сбоев напряжения в пределах объекта или энергосистемы в целом. Такой подход наиболее экономически эффективен для коммунальных потребителей, чей тариф основан на пиковом спросе энергопотребления.
Сдвиг нагрузки (также называемый «управлением тарифами») подобен пиковому сокращению потребляемой мощности, но вместо того, чтобы фокусироваться исключительно на пиковых ценах, он направлен на снижение общих затрат на кВт·ч. По сути, он использует разницу между низкой и высокой стоимостью энергии, сохраняя энергию при низких затратах и отдавая при высоких. Сдвиг нагрузки обычно обеспечивает дополнительную ценность для системы, которая уже предоставляет другие преимущества, такие как ограничение пика (максимума) нагрузки.
Возобновляемая энергия и ее проблемы
Когда возобновляемый источник энергии не может удовлетворить текущую потребность в мощности по причине неподходящих погодных условий (отсутствие достаточных солнечного света или силы ветра) или доступная генерация не соответствует пиковым потребностям в энергии, система накопления энергии может эти разрывы компенсировать, при этом поставка дополнительной энергии от традиционных источников электроэнергии не потребуется. Без накопления энергии или других управляемых источников генерации колебания возобновляемых источников энергии могут создать разрушительные дисбалансы, препятствующие поддержанию стабильности энергосистемы.
Накопитель энергии также забирает себе избыточную энергию, выработанную возобновляемыми источниками, храня ее до периодов высокого спроса. Это скорее относится к районам с большим количеством солнечных установок, таким как Калифорния (рис. 5), где электрическая сеть насыщается фотоэлектрической энергией даже в то время, когда ее невозможно полностью использовать. График, описывающий потребление энергии, исходя из его формы, часто называют duck curve (буквально — «кривая в форме утки», рис. 6).
«Кривая в форме утки» отражает полезную нагрузку в течение дня. Происхождение этого термина можно проследить по данным, приводимым California Independent System Operator (Калифорнийским независимым системным оператором) начиная с 2012 г. [2]. Этот некоммерческий независимый системный оператор контролирует работу энергосистемы, линий электропередачи и рынка электроэнергии. Для более подробного объяснения рассмотрим области, где пиковый спрос на энергию возникает после захода солнца, т. е. когда солнечная энергия больше не доступна. В тех случаях, когда энергосистема в основном использует солнечную энергию (в дневное время), в другое время суток должны быть доступны иные источники, которые смогут принять на себя нагрузку в пиковое время потребления мощности.
Кривая спроса на электроэнергию, представляющая общую нагрузку за вычетом мощности, вырабатываемой солнечной энергетикой, как уже было сказано, напоминает силуэт утки. В точке пикового спроса требуется один из двух вариантов энергоснабжения. Коммунальные службы, для того чтобы принять меры в нужный момент и в том месте, где в реальном времени прекратилось производство фотоэлектрической энергии, должны либо подключать другие источники ее генерации, либо полагаться на накопители энергии. Поскольку хранение энергии — гораздо более гибкое и быстрое, а также более экономичное и устойчивое решение, оно, безусловно, является и наиболее предпочтительным вариантом.
По мере того как феномен кривой в форме утки становится все более распространенным, растет несоответствие почасовых тарифов на энергию. В Калифорнии за последние три года суточные тарифы на электроэнергию по сравнению с прежней ценой за МВт·ч удвоились, и это при том, что цена электроэнергии в полдень из-за ее избыточной генерации солнечными электростанциями резко снизилась до $15 за МВт·ч. Аккумуляторная батарея может помочь смягчить эти проблемы и сгладить изменчивость стоимости электроэнергии в зависимости от времени суток.
Качество электрической энергии
Системы накопления энергии обладают еще одним важным преимуществом — возможностью частотного регулирования. Это позволяет конкретному объекту поддерживать работу энергосистемы в целом и решать одну из ее основных задач, а именно обеспечивать постоянную частоту генерируемого напряжения переменного тока. Как известно, электрическая система все время находится в динамическом состоянии и постоянно балансирует между предложением (генерацией) и спросом (потреблением). Способность отдельной системы накопления энергии поглощать или высвобождать энергию, а также быстро компенсировать пики потребления представляет собой потенциальную услугу балансирования, приносящую доход, и необходимую дополнительную защиту от проблем, связанных со снижением качества электроэнергии, что часто является характерной чертой систем генерации энергии из возобновляемых источников.
Повышение платы за коммунальные услуги часто связано с нагрузками на объекты с низким коэффициентом мощности. Более высокая стоимость обусловлена более низким коэффициентом мощности, а низкие коэффициенты мощности могут вызвать проблемы с качеством электроэнергии. Система накопления энергии может повысить коэффициент мощности объекта, одновременно обеспечивая улучшение качества электроэнергии и экономию на ежемесячных счетах за коммунальные услуги.
Энергетические системы четвертого поколения
Хранение энергии играет важную роль и в системах городского теплоснабжения и охлаждения. Системы распределенного теплоснабжения используются с 1880-х гг. и до сих пор продолжают развиваться. Через городскую энергосистему различные источники, связанные с отоплением и охлаждением, также могут быть дополнены соответствующим хранилищем. Один из таких проектов в виде системы хранения тепловой энергии охлажденной воды для организации Национальных институтов здоровья (National Institutes of Health) США, выполненный компанией Affiliated, показан на рис. 3 [6]. По мере появления новых идей и технологий возможны бо́льшие эффективность и диверсификация.
В публикации 2015 г. “District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy” («Распределенная энергетика в городах: раскрытие потенциала энергоэффективности и возобновляемых источников энергии») [3] в рамках программы Организации Объединенных Наций по охране окружающей среды упоминается будущий стандарт городских энергосистем как «систем четвертого поколения». Эта статья содержит рекомендации от представителей правительств разных стран и лучших в плане энергоэффективности городов по внедрению устойчивых отопления и охлаждения. Распределенное теплоснабжение, наряду с программами повышения энергоэффективности и переходом к системам четвертого поколения, позволяет получать больше отдачи от отработанного тепла и возобновляемых источников энергии в энергосистеме и обеспечивает балансирование переменных возобновляемых источников энергии, таких как солнечная энергия и ветер.
Системы четвертого поколения работают при более низких температурах воды, что приводит к снижению потерь тепла по сравнению с предыдущими поколениями и позволяет использовать различные источники для его получения, такие как отходы, геотермальный обмен, солнечное тепло, комбинированное тепло и рекуперация энергии и тепла. В сочетании с накопителем тепловой энергии и интеллектуальным управлением такая система становится экономичным способом интеграции возобновляемой энергии и технологий накопления в повседневную практику предоставления услуг энергосистемами.
Электрификация производства энергии. Транспорт
Современные энергетические (в общем понимании) и коммунальные системы становятся все более электрифицированными. Из-за развертывания все большего количества систем распределенной выработки энергии и, соответственно, распределенного ее накопления местные (традиционные) на основе топлива или возобновляемые источники энергии, а также технологии накопления энергии должны быть в состоянии стать взаимосвязанными — для обслуживания объекта, кампуса, города или какого-либо района. В таких случаях для получения электроэнергии могут использоваться, например, генераторы на природном газе, микротурбины, топливные элементы, солнечные фотоэлектрические системы, ветроэнергетические установки, комбинированные системы совместного производства теплоты и энергии (когенерационные установки). Метод накопления охлажденной воды и ее нагрева вместо сжигания ископаемого топлива максимально увеличивает коэффициент использования электроэнергии, вырабатываемой возобновляемыми источниками энергии, а также экономическую эффективность систем хранения электрической энергии. В свою очередь, электрические распределительные и передающие системы должны быть в состоянии приспособиться к большей электрификации самих источников энергии и накопительных нагрузок.
Для того чтобы выполнить эти условия, в течение нескольких лет использовались микросети. Как локализованная электрическая сеть, кампусы и другие районы аналогичного размера могут генерировать и накапливать электроэнергию из различных распределенных энергетических ресурсов, включая возобновляемые источники энергии. Уравновешивая ресурсы спроса и предложения (в том числе тепловую и электрическую нагрузку) в пределах определенных границ, именно микросетевая система обеспечивает отказоустойчивость, энергоэффективность и экономию затрат.
Еще один важный момент, который в какой-то момент начал оказывать влияние на нагрузку электросетей, связан с изменением парадигмы личного автотранспорта. По мере того как потребительский выбор смещается в сторону электромобилей и других альтернативных видов транспорта, все более актуальным становится удовлетворение потребности в соответствующей инфраструктуре, направленной на энергоснабжение этих электрифицированных транспортных средств. Подобно изменяющейся мощности возобновляемых источников энергии, переменная нагрузка из-за зарядки электромобилей, вероятно, превысит способность имеющихся систем выработки энергии соответствовать растущему спросу. Легко представить такой вариант развития событий, в котором все сотрудники одновременно приходят на работу и ставят свои электромобили на зарядку — или наоборот, когда люди возвращаются домой в конце дня и тоже подключают их подзарядиться. Интеграция дополнительных ресурсов накопления энергии в электрическую систему может помочь обеспечить требуемую энергию наиболее экономичным способом, используя для этого предварительно запасенную энергию в периоды низкой нагрузки, и система сможет быстро реагировать на повышенное потребление.
На чем основаны энергетические системы разных поколений
Первое поколение (1880–1930 гг.):
- местное отопление;
- системы на основе перегретого (высокотемпературного) пара;
- уголь.
Второе поколение (1930–1980 гг.):
- районное теплоснабжение;
- высокотемпературная система водяного отопления под давлением;
- комбинированные тепло и электрическая мощность;
- уголь, мазут.
Третье поколение (1980–2020 гг.):
- районное теплоснабжение;
- горячая вода средней температуры;
- комбинированные системы выработки тепла и электрической мощности;
- газ, уголь, мазут, энергетическое сырье из биомассы;
- крупномасштабные солнечные электростанции.
Четвертое поколение (2020–2050 гг.):
- районное теплоснабжение;
- горячая вода низкой температуры;
- централизованный нагрев и охлаждение;
- накопление и хранение электрической и тепловой энергии;
- рекуперация тепла;
- комбинированные системы выработки тепла и электрической мощности;
- энергетическое сырье из биомассы;
- геотеплообмен через геотермальные насосы;
- возобновляемая энергия: энергия солнца и ветра.
- Krause K. What does an energy storage system look like.
- California Independent System Operators.
- District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy. United Nations Environment Programme (2015).
- Parkinson G. Tesla big battery moves from show-boating to money-making.
- Fehrenbacher K. Special report: How the rise of a mega solar panel farm shows us the future of energy.
- National Institutes of Health. Chilled Water Thermal Energy Storage System.
Мы все это можем использовать, если хотим платить за энергию дороже. Эти устройства не окупаются при наличии традиционной энергетики и отмене зеленого тарифа. Слава «зеленым» исследователям и пропагандистам. Они помогают бизнесу заработать миллиарды на зеленом тарифе и обобрать народ, впаривая ему миф о сохранении окружающей среды и глобальном потеплении (циклическом процессе, независящем от деятельности человека) из-за выбросов СО2, генерируемым человеком. Кроме того, эта альтернативная энергетика и системы сохранения энергии никогда не решит глобальные проблемы энергетики.
Безумие и агония продолжаются. Большой привет «доверчивым Детям», которых грабят, а они еще и помогают в этом процессе.
Человек уничтожал и продолжает уничтожать окружающую среду и именно он виновен в глобальном потеплении из-за выбросов СО-2. Чтоб понять это, нужно проанализировать тот вред за последние 50 лет, который нанесла так называемая традиционная энергетика окружающей среде и здоровью человека.
50 лет…. не будь наивным, это небольшой срок для истории, человек не может быть виновном в том что ему не подвластно, природа имеет свои циклы, сейчас холод, потом тепло, и так постоянно. То что тебе в уши льют из зомбоящика, это не значит правда, им нужны только деньги и все, и чтоб народ был как можно глупее, вот тебе и навязывают зеленую политику…